
Streaming data analytics via message passing with application to

graph algorithms

Steven J. Plimpton and Tim Shead
Sandia National Laboratories

Albuquerque, NM
sjplimp@sandia.gov

Keywords: streaming data, graph algorithms, message passing, MPI, sockets, MapReduce

Abstract

The need to process streaming data, which arrives continuously at high-volume in real-time,
arises in a variety of contexts including data produced by experiments, collections of environ-
mental or network sensors, and running simulations. Streaming data can also be formulated as
queries or transactions which operate on a large dynamic data store, e.g. a distributed database.

We describe a lightweight, portable framework named PHISH which enables a set of inde-
pendent processes to compute on a stream of data in a distributed-memory parallel manner.
Datums are routed between processes in patterns defined by the application. PHISH can run
on top of either message-passing via MPI or sockets via ZMQ. The former means streaming
computations can be run on any parallel machine which supports MPI; the latter allows them
to run on a heterogeneous, geographically dispersed network of machines.

We illustrate how PHISH can support streaming MapReduce operations, and describe stream-
ing versions of three algorithms for large, sparse graph analytics: triangle enumeration, sub-
graph isomorphism matching, and connected component finding. We also provide benchmark
timings for MPI versus socket performance of several kernel operations useful in streaming
algorithms.

25 Oct 2012 version
submitted for publication to J Parallel & Distributed Computing

1

1 Introduction

Streaming data is produced continuously, in real-time. Processing it is often different from more fa-
miliar numerical or informatics computations or from physical simulations, which typically read/write
archived data from/to disk. The stream may be infinite, and the computations are often resource-
constrained by the stream rate or by available memory [17, 14]. For example, it may not be possible
for a computation to “see” a datum in the stream more than once. A calculation on a datum may
need to finish before the next datum arrives. While attributes of previously seen datums can be
stored, such “state” information may need to fit in memory (for speed of access), and be of finite
size, even for an infinite stream of data. The latter constraint can require a mechanism for “aging”
or “expiring” state information.

There are at least two motivations for computing on streaming data in parallel: (1) to enable
processing of higher stream rates and (2) to store more state information about the stream across
the aggregate memory of many processors. Our focus in this paper is on a distributed-memory
parallel approach to stream processing, since commodity clusters are cheap and ubiquitous, and we
wish to go beyond the memory limits of a single shared-memory node.

A natural paradigm for processing streaming data is to view the data as a sequence of individual
datums which “flow” through a collection of programs. Each program performs a specific compu-
tation on each datum it receives. It may choose to retrieve state information for previous datums,
store state for the current datum, and/or pass the datum along as-is or in altered form to the next
program in the stream. By connecting a collection of programs together in a specified topology
(which may be a linear chain or a branching network with loops), an algorithm is defined which
performs an overall computation on the stream.

On a shared-memory machine, each program could be a thread which shares state with other
threads via shared memory. For distributed-memory platforms, each program is an independent
process with its own private memory, and datums are exchanged between processes via some form
of message passing. This incurs overhead, which may limit the stream rates that can be processed,
since datums must be copied from the memory of one process into the memory of another via
a message, in contrast to shared memory where just the pointer to a datum can be exchanged.
However, distributed memory parallelism has other advantages as discussed above.

We are aware of several software packages that work with streaming data in this manner. Some
are extensions to the MapReduce model [12] with add-ons to Hadoop [1] to enable streaming data
to be mapped and reduced incrementally, with intermediate results made available continuously
[11, 16]. Other packages implement their own streaming framework, such as the S4 platform
[18] and the Storm package [2], recently released by Twitter. The former distributes the stream to
processing elements based on key hashing, similar to a MapReduce computation, and was developed
for data mining and machine learning applications. The latter is advertised as a real-time Hadoop,
for performing parallel computations continuously on high-rate streaming data, including but not
limited to streaming MapReduce operations.

There is also commercial software that provides stream processing capability. IBM has a system,
called InfoSphere Streams [3], designed to integrate data from 1000s of real-time sources and perform
analyses on it. SQLstream [4] is a company devoted to processing real-time data and sells software
that enables SQL queries to be made on streaming data in a time-windowed fashion.

We also note that the dataflow model [15], where data flows through a directed graph of processes,
is not unique to informatics data. The open-source Titan toolkit [23], built on top of VTK [5], is a
visualization and data analytics engine, which allows the user to build (through a GUI) a network
of interconnected computational kernels, which is then invoked to process simulation or other data
that is pipelined through the network. Often this is archived data, but some streaming capabilities

2

have recently been added to Titan.
In this paper we describe a new software package, called PHISH, detailed in the next section.

PHISH is a lightweight, portable framework written to make the design and development of parallel
streaming algorithms easier, particularly for the kinds of graph algorithms described in Section 3.
We also wanted a means of running streaming algorithms on a wide variety of parallel machines.
PHISH can be linked with either of two message-passing libraries, the ubiquitous message-passing
interface (MPI) library [13], and the socket-based open-source φMQ library [6], (pronounced zero-
MQ and hereafter referred to as ZMQ). The former means that a PHISH program can be run on
virtually any monolithic parallel machine; the latter means it can also run on a distributed network
of heterogeneous machines, including ones that are geographically dispersed.

Of the packages discussed above, PHISH is most similar to Storm, which also uses ZMQ for socket-
based communications. Though we began working on PHISH before Storm was released, the model
the two packages use for connecting computational processes together in different communication
patterns to enable parallelism is also similar. Storm has additional features for fault tolerance and
for guaranteeing that each datum in the stream is processed (and not dropped), which PHISH does
not provide. On the MPI-based parallel machines we most often run on, these issues are not as
important.

In the next section we give a brief description of the PHISH framework and its features. We
illustrate with an example of how both a traditional and streaming MapReduce computation can be
performed in parallel. In section 3, we outline three graph algorithms, implemented using PHISH,
that operate on edges arriving as a stream of data. Finally, in section 4 we provide benchmark
timings for prototypical stream operations, running on a traditional parallel HPC platform, using
both the MPI and socket options in PHISH. The results are a measure of the maximum stream
rates that PHISH can process.

2 PHISH Pheatures

PHISH, which stands for Parallel Harness for Informatic Stream Hashing, is a lightweight frame-
work, written in a few 1000 lines of C++ and Python code. Aside from the acronym, we chose the
name because “phish” swim in a stream (of data in this case).

The framework has two parts. The first is a library, with a C interface, which can be called
from programs written in any language (C, C++, Fortran, Python, etc). Such a program typically
performs a specific operation on individual datums in the stream. We call such simple programs
“minnows”, though they can be more complex (sharks, or even whales). Writing a minnow typ-
ically only requires defining one or more callback functions which will be invoked when a datum
arrives. Additional library functions can be called to unpack a datum into its constituent fields,
and pack new datums to send downstream to other minnows. The PHISH library handles the
actual communication of a datum from one minnow to another, via the MPI or ZMQ libraries it
was linked to.

The second part of the framework is a pre-processing tool called “bait” which enables a compu-
tation using one or more minnows to be specified. The bait tool reads a simple input script with 3
kinds of commands. “Minnow” commands specify what executable to launch, and any command-
line arguments it needs. “School” commands specify how many minnows of each type to launch
and, optionally, how to assign them to physical processors. “Hook” commands define a commu-
nication pattern used to route datums between minnows in schools. Examples of such patterns
are “paired” (each sending minnow sends to one receiver), “roundrobin” (each sender sends to a
different receiver each time), “hashed” (send to a specific receiver based on a hash operation), and

3

Scatter

Scatter

Scatter

Scatter

....

Analyze

Analyze

Analyze

Analyze

....

Stats

snapshots IDs

Map Reduce

Trigger

simulation
running

files

Figure 1: A PHISH net (in black and green) for performing a traditional or streaming MapReduce
on snapshots produced by a particle simulation. The school of scatter minnows perform a “map”
operation in parallel; the analyze minnows perform a “reduce”. The minnow in red can be added to
enable real-time interaction with a running simulation.

“bcast” (send to all receivers). The “bait” tool converts the input script into a file suitable for
launching all the minnow executables in parallel. The user can choose to have the bait tool invoke
the parallel job as well, which it does via an “mpirun” command (if using MPI) or “ssh” commands
(if using ZMQ). In the latter case, the bait tool also initiates and synchronizes all the necessary
socket connections between the various minnows.

The commands in the input script define a PHISH “net” which specifies the sequence of compu-
tations to perform on a stream of datums and the topology of how datums flow between minnows.
When a PHISH net is launched, it becomes a distributed-memory parallel program, a MPMD model
(multiple program, multiple data) in parallel taxonomy. Each minnow runs as its own process with
its own private memory, not as a thread.1 Within the PHISH library, datums are sent from minnow
to minnow using standard message-passing techniques (MPI, ZMQ).

In a streaming context, a PHISH program can exploit parallelism in the two ways mentioned in
Section 1, via the school and hook commands described above. The stream of incoming data can be
split, so that individual minnows compute on portions of the stream. Second, state information on
datums in the stream can be stored across the aggregate memory of many minnows. For example,
as discussed in Section 3, the edges of a large graph can be distributed in this manner, enabling
analysis of a larger graph than fits in one node’s memory.

To make this concrete, consider the PHISH net illustrated in Fig 1. The black and green portions
represent a MapReduce operation [12], which can be performed in a traditional batch-oriented
manner on archival data (i.e. similar to Hadoop [1]), or in streaming mode.

The calculation performed by this MapReduce is motivated by an example given in [22]. Imagine
a large-scale particle simulation has generated an archive of snapshot files. A post-processing
calculation reconstructs the trajectory of each particle and performs an analysis on it for statistical
purposes. E.g. how many times did some atom approach a binding site on a protein, or how many
times did particles traverse a porous membrane. Doing the analysis for an individual trajectory
is easy, however reconstructing each trajectory requires data (for a specific particle) from every
snapshot. The MapReduce is a means to “transpose” the data from a per-snapshot to a per-
trajectory representation.

1A minnow, meant to run on a multi-core node, could be written so that it spawns threads, which in turn use the
node’s memory to store shared state across threads.

4

The left green box is a school of “scatter” minnows; the right box is a school of “analyze” minnows.
Each can contain as many minnows as desired. An individual scatter minnow reads one or more
snapshots from disk. It parses the snapshot into datums, one per particle. A datum contains the
particle ID, its coordinates, and a timestamp. It sends the datum to a unique analyze minnow,
determined by hashing on the particle ID. This ensures the same analyze minnow will receive all
datums for that particle, from all scatter minnows. This mode of hashed all-to-all communication
is indicated in the figure by the overlapping arrows between the scatter and analyze schools. When
all snapshots have been read, the scatter minnows signal the analyze minnows, and the analyze
minnows can begin their analysis. For each particle they own, they sort the received datums by
timestamp to reconstruct a trajectory. Then they analyze the trajectory and send an appropriate
result as a datum to the “stats” minnow. When the analyze minnows are done, they signal the
stats minnow and it outputs aggregate statistics.

Similar to a MapReduce with Hadoop, the user need only write the scatter, analyze, and stats
functions; the PHISH framework provides the rest of the functionality, including movement of
datums between the minnows. Unlike Hadoop, PHISH does not run on top of a parallel file system
or provide fault-tolerance or out-of-core capabilities (unless the user writes minnows that archive
data to disk and later retrieve it). Also note that unlike Hadoop which moves data between
processors in big blocks (e.g. during a shuffle operation), the communication here is fine-grained
and continuous; a datum for one particle is a few bytes.

With minor modifications (in red), the PHISH net of Fig 1 can also perform its MapReduce
in streaming mode. If it runs at the same time as the simulation, the scatter minnows can read
snapshots from disk as they appear, or directly from the processors running the simulation. The
analyze minnows can store particle datums in sorted order as they arrive. An additional “trigger”
minnow could be added which responds to user input, either from the keyboard or a created file.
The user requests a status report on the running simulation, which the trigger minnow relays to
the analyze minnows. They examine the trajectories they have thus far and send results to the
stats minnow. The results can be perused by the user, or relayed back to the running simulation
to alter its parameters, i.e. in a computational steering scenario.

Additional features of the PHISH framework, useful for implementing streaming algorithms, are
as follows:

• Minnows can define multiple input and output “ports” for receiving and sending datums
of different kinds, and minnows are free to assign semantic meanings to ports in any way
they choose. This allows flexible combinations of minnows to form complex PHISH nets.
For example, the analyze minnows of Figure 1 are using 2 input ports, one for datums from
scatter minnows, and one for datums from the trigger minnow.

• Minnows typically wait to perform work until a datum arrives. PHISH allows a callback
function to be specified which is invoked by the library when the input queue of datums is
empty, so that the minnow can perform additional computations when they would otherwise
be idle.

• Minnows in a PHISH net may send datums to themselves, as in Figs 2 and 5. The library
treats such messages efficiently, without using MPI or ZMQ. The library also allows received
datums to be queued for delayed processing.

• A PHISH net can be setup to run continuously (until the user kills it) on an infinite stream
of data. Or it can be run on a finite stream, e.g. by reading data from disk. In the latter
case, special termination datums can be sent which enable each minnow to exit gracefully.

5

• As data flows through a PHISH net, one or more minnows can be bottlenecks, e.g. due to
the expense of the computations they perform. This can cause overflows in communication
buffers. The ZMQ socket library handles this transparently; the stream of data is effectively
throttled to flow at the rate allowed by the slowest minnow. Some MPI implementations will
do this as well, but some can generate errors. PHISH has a setting to invoke synchronized
MPI send calls for every Nth datum, which handshake between the sender and receiver,
avoiding this problem.

• PHISH formats a datum as a collection of one or more fields, each of which is a primitive data
type (4-byte integer, 8-byte unsigned integer, 8-byte double, character string, vector of 4-byte
integers, etc). Because the fields have precise types (4-byte integer, not just an integer),
datums can be exchanged between minnows written in different languages or running on
different machines. Minnows can also build on the low-level format to implement their own
custom datum format, e.g. a list of labeled key/value pairs.

• A PHISH wrapper (pun intended) for Python is provided, so that minnows can be written
in Python. This is a convenient way to develop and debug a streaming algorithm, since
Python code is concise and Python and C/C++ minnows can be used interchangeably (see
the previous bullet). Callbacks from the PHISH library to a Python minnow (e.g. when a
datum is received) require an extra layer of function calls, which introduces some overhead.
The performance difference is benchmarked in Section 4.

• PHISH programs are very portable. As with any MPI or socket program, a PHISH net can be
run on a single processor, a multi-core desktop machine, or a shared-memory or distributed-
memory cluster, so long as the platform supports MPI or socket communication (via ZMQ).
This includes running with more minnows than physical processors, though performance
may suffer. Using ZMQ, a PHISH net can even be run on a geographically dispersed set of
heterogeneous machines that support socket communication.

• In many cases, minnows can be written generically, to accept multiple input datum types
(e.g. integers or floating-point values or strings). This makes it easier to re-use minnows in
multiple PHISH nets.

• A minnow can look for incoming datums on a socket port. It can likewise export data to a
socket port. This means that two or more PHISH nets can be launched independently and
exchange data. This is a mechanism for adding/deleting processes to a calculation on the fly.

• There are minnows included in the PHISH distribution which wrap non-PHISH applications
that read from stdin and/or write to stdout. This allows such an application to be used in a
PHISH net and exchange datums with other minnows.

3 Graph Algorithms

In this section we outline three graph algorithms we have devised that operate in a streaming con-
text, where edges of a graph arrive continuously. All have been implemented in PHISH, as described
below. The first is for enumerating triangles, the second for identifying sub-graph isomorphism
matches, and the third for finding connected components. A nice survey of graph algorithms for
streaming data is given in [19], where various extensions to the fundamental one-pass streaming
model are considered.

These particular algorithms, whether used in streaming mode or to analyze an archived graph,
are useful for characterizing the structure of the graph or finding patterns within it, e.g. in a data

6

mining sense. The streaming versions of the algorithms exploit parallelism, both by storing the
graph in the aggregate distributed memory of a set of processors, and by spreading computations
across processors. The algorithms are described for undirected graphs, but could be modified to
work with directed edges as well.

We note that these graph algorithms do not meet all the criteria of resource-constrained stream-
ing algorithms described in Section 1. In particular, they store all the edges of the graph (in a
distributed manner), at least for some time window, and are thus not sub-linear in their memory
cost. But as the benchmark results in Section 4 indicate, they can operate in real-time for fast
stream rates. For the first two algorithms this is true, so long as the graph structure is sufficiently
sparse that relatively few triangles or sub-graph matches exist. Otherwise the arrival of a new edge
may trigger substantial communication and computation which could slow the rate at which new
edges are processed. (Although any source of edges will typically allow for some buffering.) The
third algorithm, for connected components, processes edges in constant O(1) time, so that it is
guaranteed to keep up with streams, up to some maximum rate.

3.1 Triangle enumeration

A triangle in a graph is simply 3 vertices IJK connected by 3 edges (I, J), (J,K), (I,K). The
computational task is to enumerate (or just count if desired) all such triangles in the graph. A
MapReduce algorithm for this operation was described in [10], and its implementation in a MapRe-
duce framework built on top of MPI was detailed and benchmarked in [21]. The MapReduce
algorithm enables triangles to be found in parallel in an out-of-core fashion on huge graphs that
cannot be stored in memory.

In streaming mode, as each edge arrives, we will identify all triangles induced by that edge. At
any point in time, all triangles for the current graph will thus have been found. If a final edge
arrives (for a finite graph), all its triangles will have been found.

A PHISH net for performing this operation is shown in Fig 2. There is a source of edges, which
could be one or more files, or a synthetic edge generator such as for a randomized sparse R-MAT
matrix [9] (useful for testing), or a real-time data stream. The edge source sends each edge (I, J)
to the specific triangle minnow that “owns” vertex I within the school of minnows in the green
box. This is done via the “hashed” communication mechanism described in Section 2, by using the
hash of the vertex ID to both route the datum and assign ownership.

The data structure maintained by each triangle minnow is a list of edges for each vertex that it
owns. Each edge (I, J) is thus stored twice, once by the minnow that owns vertex I and once by
the minnow that owns J . When edge (I, J) is added to the graph, the triangles that contain it are
those that include a vertex K that is a neighbor vertex (edge) of both I and J . The list of all such
K vertices can be identified if the two minnows that own I and J exchange neighbor information.
These are the minnows highlighted in red and blue in Figure 2; the details of the algorithm are
outlined in Figure 3.

In the first stage (receive a datum on port 0), the triangle minnow owning vertex I stores edge
(I, J), assuming the same edge has not been seen before and is not a self edge with I = J . It then
sends the edge as (J, I) to the owner of J (on port 1). Note that this could be itself if the same
minnow owns both I and J .

In stage 2, the owner of J receives the edge and stores it, then sends the edge plus the current
degree Dj of J , back to the owner of I. The purpose of exchanging degree information is to
determine which of the 2 vertices has smaller degree, so that the shorter of the two neighbor lists
can be sent, to minimize communication. A similar idea is exploited in the MapReduce triangle
enumeration algorithm [10, 21] at an intermediate stage when low-degree vertices are selected to

7

Stats

Triangle

Triangle

edges

neighbors

degrees

edge

source

....

Triangle

Triangle
triangles

Figure 2: PHISH net for enumerating triangles in a stream of incoming graph edges. Each triangle
minnow stores a fraction of the edges. Exchange of edge degree and edge neighbor datums occur
between the pair of triangle minnows (blue,red) owning each vertex of a new edge that arrives.
Found triangles are sent to the stats minnow.

Input Method Output
port 0: (I, J) Store edge with I;

send edge to owner of J
port 1: (J, I)

port 1: (J, I) Store edge with J ;
send degree of J to owner of I

port 2: (I, J,Dj)

port 2: (I, J,Dj) Compare degree of I to Dj ;
if Di > Dj : request neighbors of J
else: send neighbor list of I to J

port 3: (J, I,Dj , Di)
port 4: (J, I,Dj , Ni)

port 3: (J, I,Dj , Di) Send neighbor list of J back to I port 4: (I, J,Di, Nj)
port 4: (I, J,Di, Nj) Find common neighbors K of I and J ;

send triangle IJK to stats minnow
port 0: (I, J,K)

Figure 3: Triangle enumeration algorithm performed by the “triangle” minnows in Figure 2, when-
ever an edge (I, J) is received. Except for the input edge (port 0) and output triangles (port 0), all
other datums are exchanged between the two minnows owning vertex I and J , as indicated in Fig
2.

8

generate “wedges” (triangles without a 3rd side) so as to minimize the number of wedges generated
in order to find triangles.

In stage 3, the owner of I receives Dj and compares it to Di. If Dj is smaller, it sends a request
back to the owner of J for its neighbor list. Otherwise it sends the current neighbor list of I to the
owner of J , i.e. the list of vertices that share an edge with I. Stage 4 is only invoked if Dj < Di;
the owner of J sends its neighbor list back to the owner of I.

The final stage 5 (receive a datum on port 4) is where the two neighbor lists of I and J are
compared to find all the K neighbors they have in common. Note that this comparison may be
performed by either the owner of I or J depending on which neighbor list was shorter (whether the
received datum was sent from stage 3 or 4). Each common K neighbor represents a triangle IJK
that now exists due to the arrival of edge (I, J); the triangle is sent to the “stats” minnow, as in
Figure 2.

Note that each minnow in the triangle school performs all the stages of this algorithm, depending
on which of the 5 input ports an incoming datum was received on. In a real-time sense, the graph
edges are streaming into the school of triangle minnows and being continuously stored. Each
new edge (I, J) triggers a back-and-forth exchange of datums between two minnows in the school
that own I and J as they swap degree and neighbor information. In aggregate, these additional
datums are sent from the school of triangle minnows to itself (on other ports), via hashed all-to-all
communication. This is indicated in Figure 2 via the reverse arrows for “degrees” and “neighbors”.
Thus an individual triangle minnow receives a mixture of incoming edges and degree/neighbor
datums from other triangle minnows.

In a serial or MapReduce algorithm for triangle enumeration, it is easy to insure each triangle is
found exactly once. In streaming mode, it is more difficult, due to unpredictable delays between
arrivals of datums. The algorithm of Figure 3 does not miss any triangles, but can find a triangle
more than once. Duplicates are reduced by two features of the algorithm. The first is waiting to
trigger degree and neighbor exchanges until a new edge (I, J) is stored the second time by vertex J .
If this is not done, a second edge (J, I) in the stream may trigger a duplicate triangle search before
the minnow owing J knows that (I, J) was also received by the minnow owning I. The second
feature is to limit the size of communicated neighbor lists to Di or Dj at the time their degree was
first computed, not their current degree at the time they are sent. The latter will be larger if new
edges have since arrived, leading to extra communication, computation, and duplicate triangles.

Finally, we note that sending the smaller of the neighbor lists Ni or Nj does not mean the
communication and associated computation is always small. If two high-degree vertices are finally
linked by an incoming edge (I, J), then a large number of triangles will likely be found and emitted
by stage 5 of the algorithm.

3.2 Sub-graph isomorphism matching

Before presenting the streaming algorithm for sub-graph isomophism (SGI) matching, we define
what an SGI match is. A semantic graph is one whose vertices and edges have labels, as represented
by colors in Figure 4. A small “target” graph is defined, e.g. the 5-vertex, 6-edge graph at the left
of the figure. The computational task is to find all isomorphic matches to the target graph in the
full graph. A matching sub-graph is one with the same topology and same coloring of vertices and
edges as the target graph.

A shared-memory parallel algorithm for this operation was described in [8], and a distributed-
memory parallel MapReduce algorithm in [20]. The latter allows SGI matches to be found in
parallel within huge graphs that cannot be stored in memory. In streaming mode, as with the
triangle algorithm, as each edge arrives, we will identify all SGI matches induced by that edge.

9

F 0 0 0 0 0 2 5 3

L

Figure 4: Conversion of a small semantic (colored) graph (left) to an ordered path (right and
bottom) that touches all vertices and edges. The topology of the graph is encoded in the vertex flags
(F at bottom), which indicate a vertex is new (0) or previously seen as the N th vertex.

At any point in time, all matches for the current graph will thus have been found. If a final edge
arrives (for a finite graph), all SGI matches will have been found.

The shared-memory and MapReduce algorithms for this operation both employ a representation
of the target graph called an ordered “path”, which the streaming algorithm will also use. It is
illustrated in Figure 2. The target graph is traversed such that each vertex and edge is visited at
least once, as with the arrowed graph at the right of the figure. In this case the traversal is a 7-step
path through the target graph. Note that the path is not unique; other traversals also yield valid
paths. Computationally, the shorter the path, the more efficient the matching algorithm will be.
The colored vertices and edges encountered along the path are tallied as “L” at the bottom of the
figure. The topology of the target graph is encoded by the “F” flags. A zero value indicates the
vertex is visited for the first time; a value of M > 0 indicates the visited vertex is also the Mth
vertex in the path. E.g. the blue vertex with F = 2 is the same as the 2nd vertex (also blue). For
reasons explained below, in the streaming algorithm, N paths are generated as a pre-processing
step, one that begins with each of the N edges in the target graph.

A PHISH net for identifying SGI matches is shown in Fig 5. As with the triangle net, there is a
source of edges, which could be from files, a synthetic edge generator, or a real-time data stream.
The edge source sends each edge (I, J) to the specific SGI minnow that “owns” vertex I within the
school of minnows in the green box, via “hashed” communication, as described in Section 2.

As with the triangle algorithm, the data structure maintained by each SGI minnow is a list of
edges for each vertex that it owns, and each edge (I, J) is stored twice. When edge (I, J) is added
to the graph, any new matches to the target graph induced by that edge will be described by one
(or more) of the N pre-computed paths that begin with a matching edge. Each match initiates a
“walk” through the path that can be extended, one edge at a time, by the minnow that owns the
last vertex in the walk. For example, if the minnow highlighted in blue finds 2 neighbor vertices of
the last vertex that extend the walk, it sends the extended walk to each of the minnows highlighted
in red that own those 2 vertices. If the process can be repeated until all edges in the target graph
path are matched, then an SGI match has been found. The details of the algorithm are outlined
in Fig 6.

In the first stage (receive a datum on port 0), the SGI minnow owning vertex I receives edge
(I, J), along with labels (colors) Li and Lj on the two vertices and the edge Lij . It stores the edge
and labels assuming the same edge has not been seen before and is not a self edge with I = J . It
then sends the edge and labels as (J, I, Lj , Li, Lij) to the owner of J (on port 1).

10

Stats

SGI

....

N−step walks

SGI

SGI

SGI

source

edge

matchesedges

Figure 5: PHISH net for finding sub-graph isomorphism (SGI) matches to a target graph in a
stream of graph edges. Each SGI minnow stores a fraction of the edges. New edges that match an
edge in the target graph initiate walks along the path of Fig 4. A blue owner of the last vertex in a
walk extends the walk by matching the next edge and sends it to red owners of the new last vertices.
After N repetitions complete the path, SGI matches are sent to the stats minnow.

Input Method Output
port 0: (I, J, Li, Lj , Lij) Store edge with I;

send edge to owner of J
port 1: (J, I, Lj , Li, Lij)

port 1: (J, I, Lj , Li, Lij) If edge matches path Pn;
initiate walk by sending to owner of I or
J

port 2: (Pn, [I, J])

port 2: (Pn, [I, · · · , J]) Find neighbors K of J that extend walk;
send extended walk to owner of K;
if complete: send SGI match to stats
minnow

port 2: (Pn, [I, · · · , J,K])
port 0: ([I, · · · , J])

Figure 6: Sub-graph isomorphism matching algorithm performed by the “SGI” minnows in Figure 5,
whenever an edge (I, J) is received with vertex and edge labels (Li, Lj , Lij). The algorithm generates
walks through the ordered path of Fig 4, matching the path one edge at a time via datums sent and
received on port 2.

11

In stage 2, the owner of J receives the edge and labels and stores them. It then checks if the edge
is a match to the first edge in any of the N pre-computed paths that represent the target graph.
A “match” means that the two vertex labels Li and Lj and edge label Lij of the incoming edge all
match the path edge. For an asymmetric edge (Li 6= Lj) the match can be for (I, J) or (J, I). If a
match is found, (I, J) is an initial one-edge walk along path Pn, where n ranges from 1 to N . Each
match is sent to the owner of the final vertex in the walk as (Pn, [I, J]) (on port 2). Note the final
vertex can be either I or J .

Stage 3 (receive a datum on port 2) is repeated as many times as necessary to extend a walk
into a match to the full path. The edges of the last vertex in the walk are scanned to find matches
to the next edge in path Pn. As before, a match means the vertex and edge labels match. It also
means that the constraint flag F is satisfied, i.e. the new edge vertex does not appear in the walk
if F = 0 or it appears as the Mth vertex in the walk if F = M > 0. For each matching edge, the
walk is extended by the neighbor vertex K and sent to the owner of K as (Pn, [I, · · · , J,K]). Note
that if N matching edges are found, a single incoming walk is output as N extended walks. If no
matches are found, the walk vanishes, since it is not communicated further. This process repeats
until the walk is a full-length match to the path Pn, at which point it is sent as an SGI match on
port 0 to the “stats” minnow, as in Fig 5.

Each minnow in the SGI school performs all the stages of this algorithm, including multiple
repetitions of stage 3. Graph edges are streaming into the school of SGI minnows and being
continuously stored. Each new edge (I, J) that matches some edge in the target graph triggers a
cascade of walk datums sent within the “neighborhood” of minnows owning I and J , which includes
the owners of the vertices that are “close” to I and J , i.e. neighbors of neighbors of neighbors out
to some range that spans the target graph diameter. In aggregate, these additional walk datums
are sent from the school of SGI minnows to itself (on port 2), via hashed all-to-all communication,
indicated in Figure 5 via the reverse arrows for the “N-step walks”.

As with the triangle enumeration algorithm, this algorithm does not miss any SGI matches, but
can find duplicate matches, depending on the time of arrival of incoming edges and random delays
in subsequent messages they induce between SGI minnows. For example, if two edges in the same
SGI match arrive at nearly the same time, they may both initiate walks that complete because the
other edge arrives before the growing walk reaches it.

Finally, we note some differences between the streaming version of this algorithm and its shared-
memory [8] and MapReduce [20] counterparts. Because the latter operate on a complete graph after
it has been stored, they need only represent the target graph with a single path. If the character
of the full graph is known a priori, the path can be ordered so that vertex and edge labels that
appear less frequently come early in the path. This can greatly reduce the number of walks that
are generated. The streaming algorithm cannot take advantage of either of these ideas. N paths,
each starting with a different edge, are needed to represent the target graph, because an incoming
edge may match any target graph edge, and the SGI matches it induces cannot be found until it
arrives. This also means that walks that begin with edges that appear with high frequency are
all initiated and followed to completion or termination. In practice, this means the streaming SGI
algorithm is more likely to generate large numbers of walks that do not end in matches than its
non-streaming cousins. As with the triangle algorithm, the addition of a single edge to the graph
can trigger a large number of new datums.

3.3 Connected component finding

A connected component (CC) of a graph is a set of vertices whose edges can be traversed to reach
any other vertex in the set, but no vertices not in the set. Sparse graphs may have one or many

12

A B
v4

v5
v3

v1
v2

v3

v6

A
v2

B
v4

C

edge

source

User

Head

CC CCTail

CC CC

CCi CCj

....Edge

result

CC

Figure 7: PHISH net for finding connected components (CC) in a stream of graph edges which
circulate around a ring of CC minnows from head to tail. The edges are stored in a hierarchical
data structure across the CC minnows, as illustrated at the bottom for two of the CC minnows,
which encodes the component structure. User queries can be interleaved into the stream and results
output by the tail minnow.

such components.
A PHISH net for finding CCs is shown in Figure 7. As before, edges arrive from some external

source (file, real-time data stream). The “edge” minnow sends them along to a school of CC
minnows (green box) configured as a ring. The edge minnow also polls for occasional queries from
a “user” minnow which are converted to specially formatted datums and interleaved between the
graph edges. Sample queries might be “which CC is vertex I a part of?” or “how many small
components of size < N are there?”. The CC minnows store the graph in a distributed data
structure that allows them to answer the queries.

All communication between the CC minnows is either graph edges or additional datums inter-
leaved between the edges that circulate around in the ring in one direction. An individual CC
minnow thus inputs and outputs a single stream of datums. It may store edges, grouped by com-
ponent, as in the figure for minnow CCi storing components A and B. It also has a memory limit
for the number of edges it can store. When it exceeds the limit, it sends edges along to the next
CC minnow, but may alter the edge vertices to reflect the component a vertex is in. Thus the next
minnow CCj sees components A and B as pseudo-vertices, without knowing their internal structure
of edges and vertices. A new edge such as (V2, V4) received by CCj may connect components A and
B into one component C. The graph is thus stored in an hierarchical fashion, akin to a set of nested
Russian dolls, across the CC minnows. Over time, CC minnows in the ring fill up with edges one
by one, until the “tail” starts to fill. At that point, the tail signals the head that “old” edges need
to be deleted and memory freed up. The CC minnows jettison edges based on a stored timestamp,
and adapt the component data structures on the fly as new edges continue to arrive. Adapting the
data structures requires communication of additional datums, which are again interleaved into the
continuous stream of incoming graph edges.

A key attribute of this streaming CC algorithm is that all of its data structures can be searched
and updated in constant O(1) time as each edge arrives or as aging is invoked, for an infinite

13

stream of edges. This means the algorithm is guaranteed to “keep up”, for some maximum allowed
stream rate of input edges. The maximum depends on the ratio of communication to computational
cost. The details of how the algorithm does this are beyond the scope of this paper. There are
complex issues associated with aging (deletion) of edges, and handling certain edges when a CC
minnow’s memory is already full. Details of the entire algorithm are provided in [7]. Here we
have simply highlighted what PHISH provides to enable the ring-based algorithm to process edges
and queries. An additional PHISH feature, which the algorithm uses, is the ability to reconfigure
the communication pattern between minnows on the fly. When the tail minnow fills up and aging
occurs, the ring topology may rotate one position, with the second CC minnow becoming the head,
the old head becoming the new tail, and the edge minnow sending edges to a new head. Or the
ordering of the ring may be permuted with a new minnow becoming the tail. The PHISH library
has functions which allow for these reconfigurations, which the CC minnows can invoke.

Finally, we note that the triangle enumeration and SGI matching algorithms discussed earlier
in this section could also be adapted to infinite edge streams, like the CC algorithm, with minor
modification. If a time stamp is stored with each edge, then when memory fills up, each triangle
or SGI minnow could jettison old edges as needed. Future new edges would then only generate
triangles or sub-graph matches in the time-windowed graph that includes recently stored edges.

4 Performance Results

In this section we use PHISH to benchmark three simple operations, which are communication
kernels in many streaming algorithms, including those of the preceding section. We also benchmark
a fourth operation, that communicates graph edges in a hashed manner and stores them by vertex in
the aggregate memory of a set of minnows. This is a also a common operation in graph algorithms
like those of the preceding section, and is a test of both datum communication and the use of a
prototypical graph data structure.

The first kernel exchanges a datum, back and forth between 2 minnows. The second sends datums
in one direction down a chain of minnows. The third uses one school of minnows to send datums
in a hashed manner to another school. These 3 tests were run across a range of datum sizes and
minnow counts. They were also performed in 4 PHISH modes: using MPI or ZMQ (sockets) as
the backend, and using minnows written in C++ or Python. The latter uses a Python wrapper on
the PHISH library. Performance in a fifth mode was also tested, using traditional SPMD (single-
program multiple-data) MPI-only implementations of the 3 kernels, which allows PHISH overhead
to be measured. The fourth kernel generates graph edges, and sends them in a hashed manner to
minnows that store them in a simple data structure, as a list of edges per vertex.

All of the tests were run on a large production Linux cluster at Sandia. It has 2.93 GHz dual quad-
core Nehalem X5570 processors (8 cores per node) and a QDR InfiniBand interconnect configured
as a 3d torus. Tests with MPI used OpenMPI 1.4.3; tests with ZMQ used version 2.2.0. Runs were
made on up to 32 nodes of the machine (256 cores); the hash benchmark was also run on 1024
nodes. To insure the measured stream rates came to equilibrium, each test was run for at least 30
seconds and repeated twice, averaging the results.

We also tested how the mapping of minnows (processes) to cores of the multi-core machine
affected performance. For the chain and hash tests, 3 mapping modes were tested. The first two
modes use all cores of as many nodes as required, based on the total process count. The first mode
assigns minnows first by core, then by node. The second mode assigns minnows first by node, then
by core. For example, if 16 minnows are used in the PHISH net, both the first and second mode
use all the cores of 2 nodes (8 cores per node). The first mode runs minnows 1-8 run on the first
node, and 9-16 on the second node. The second mode runs odd-numbered minnows on the first

14

node, and even-numbered minnows on the second node.
The third mode uses only a subset of cores on each node if possible. As in the second mode,

minnows are assigned first by node, then by core. However all the nodes allocated for the batch
job are used (32 in our case, or 256 cores). Thus for a 16-minnow test, each minnow is assigned to
a single core of a different node. The remaining cores on those nodes (as well as the entire other
16 nodes) are idle. As seen below, runs in these various modes perform differently. This is because
they stress intra-node communication (between cores in a node) versus inter-node communication
capabilities differently.

It is worth noting that all these tests perform message passing in a somewhat unnatural mode
for a distributed-parallel memory machine, whether via MPI or ZMQ. For optimal communication
performance, traditional MPI programs often bundle data together into a few, large messages, and
each processor typically communicates with a handful of neighbor processors, e.g. by spatially
decomposing a physical simulation domain. By contrast, in these tests, millions of tiny messages
are sent in various patterns, including an all-to-all pattern for the hash test, and there is little
computation to offset the communication cost, even when the kernels are used in a graph algorithm.
Yet, as we shall see, MPI in particular supports this fine-grained style of communication fairly well.

4.1 Pingpong test for latency

The first test sends a datum back and forth between 2 minnows, in a pingpong fashion. Its
performance, measured in millions of datums per CPU second, is shown in Figure 8, for datum
sizes from 0 to 16K bytes (empty 0-byte datums in PHISH are actually a few bytes due to datum
type and port information included in the message). For a 0-byte datum this is effectively a latency
test, with latency being the inverse of the rate. The two minnows were run either on two cores of
a single node (circles in the plot, (c) in the legend), or on a core of two different nodes (X’s in the
plot). Using both cores within a single node was faster in all cases, since latencies for intra-node
communication are smaller than for inter-node.

For small datums, a rate of over 1 million datums/sec is achieved (for the intra-node layout)
by native MPI as well as by PHISH running on top of MPI, which adds little overhead in this
case, as well as for the other benchmarks discussed below. Running minnows written in Python
degrades the performance by a factor of 2-3x. For the ZMQ (sockets) backend, the small-datum
rate is about 30x slower than PHISH with MPI. This is because sockets are not optimized for this
style of back-and-forth communication, whereas MPI is.

For larger datums, communication bandwidth becomes the bottleneck rather than latency, and
the rate degrades, though PHISH with MPI can still exchange over 100K datums/sec for 16K byte
datums. ZMQ now performs better relative to MPI.

4.2 Chain test for throughput

The second test configures a school of P minnows as a 1d chain. The first minnow sends datums to
the second as rapidly as it can. The second minnow receives each datum and sends it to the third,
and so on down the chain. The final minnow in the chain receives and discards all the datums, and
signals the first minnow when it is done. Since the communication is one-way, this is effectively a
test of throughput.

Results of this test for varying minnow count (chain length) are shown in Figure 9 for 0-byte
datums. Ideal performance would be a constant rate, independent of chain length, meaning the
stream of data flows unimpeded through an arbitrary number of minnows. Most of the curves
flatten out once the chain length is a few minnows, though the rate degrades slowly as chain length

15

Figure 8: Rate of datum exchange between 2 minnows in a pingpong test for varying datum sizes.
All but the MPI-only curves are for PHISH, using its MPI or ZMQ backend, with minnows written
in C++ or Python. The test was run on 2 cores of the same node (circles) or on 1 core each of 2
different nodes (X’s).

16

Figure 9: Rate of sending 0-byte datums in one direction along a chain of minnows of varying
length. All but the MPI-only curves are for PHISH, using its MPI or ZMQ backend, with minnows
written in C++ or Python. Curves with X’s may use less than all 8 cores per node. Two of the MPI
tests (red) use all cores on each node, ordering minnows by core (circles) or by node (diamonds),
as discussed in the text.

increases. Note that any minnow in the chain that runs a little slowly, due either to variations in
its CPU clock or communication links, will act as a bottleneck for the entire chain.

In contrast to the pingpong benchmark, the ZMQ performance in this test is nearly identical
to the MPI performance. This is because sockets are optimized for throughput, i.e. one-way
communication, which is also a good match to the streaming paradigm.

As discussed above, the chain test was run with 3 different modes of mapping the P chain
minnows to the multi-core nodes. The majority of the curves (X’s) used the third mapping mode
where minnows were assigned to all 32 allocated nodes, first by node, then by core. Runs in this
mode thus used less than 8 cores/node (except on 256 processors), e.g. a chain-length of 16 uses
one core on each of 16 nodes. This gave the fastest performance for this benchmark because it
provides more inter-node communication capability on a per-core basis. For PHISH running on
MPI (red curves), performance for the other 2 mapping modes is also shown. In these modes all 8
cores of the minimum number of required nodes were used, e.g. a chain-length of 16 used only 2
nodes. The curve with circles assigned minnows by core, then by node; the curve with diamonds
assigned minnows by node, then by core. Both of these modes ran at a rate about 2x slower than
the third mode. Similar trends for the 3 modes were seen for the other PHISH options (ZMQ,
Python) as well as the MPI-only case.

Figure 10 shows the rate at which datums of varying sizes from 0 to 16K bytes can be sent
down a chain of 64 minnows. For small datums the rate is fairly constant; above 256 bytes the
rate degrades due to communication bandwidth limitations. However, 16K-byte datums can still

17

Figure 10: Rate of sending datums of varying sizes in one direction along a chain of 64 minnows.
All but the MPI-only curves are for PHISH, using its MPI or ZMQ backend, with minnows written
in C++ or Python. The meaning of curves with X’s, circles, and diamonds is the same as in Figure
9.

be streamed at a rate of tens of thousands per second. The performance differences between the 3
modes of mapping minnows to multi-core nodes are similar to that of Figure 9.

4.3 Hash test for scalability

The third test configures two schools, a source and sink, each with P/2 minnows. They are
connected via a “hashed” communication pattern. Each source minnow sends datums continuously,
using a random number as the value to hash on, so that each datum is sent to a random sink minnow.
The P/2 source minnows are thus sending in an all-to-all pattern to P/2 sink minnows. Ideally,
the larger P is, the greater the aggregate datum rate should be, meaning that parallelism enables
processing of higher stream rates. Results of this test for varying total minnow count P are shown
in Figure 11 for 0-byte datums.

The trend for all of the tests (MPI-only, PHISH on MPI or ZMQ or with Python) is that the rate
rises linearly with minnow count until a saturation level is reached. The level depends on the mode
of mapping minnows to multi-core nodes. For PHISH on MPI, curves for all 3 mapping modes are
shown in red. The performance in the circle curve (mapping by core, then by node) saturates first,
at 8 cores, which means 4 source and 4 sink minnows all assigned to one node. The performance in
the diamond curve (mapping by node, then by core), saturates at a higher rate on 16 cores. In this
case, the 8 source and 8 sink minnows are each split evenly across 2 nodes (4 source minnows on
each node). This outperforms the circle curve mapping, which puts 8 source minnows on one node,
and 8 sink minnows on the other, by a factor of 4x. This is because communication is one-way from
source to sink minnows, and the outbound inter-node communication capability of both nodes is

18

Figure 11: Rate of sending 0-byte datums in a hashed mode from P/2 source minnows to P/2 sink
minnows, as a function of total minnow count P . All but the MPI-only curves are for PHISH,
using its MPI or ZMQ backend, with minnows written in C++ or Python. As in Figure 9, the X’s,
circles, and diamonds indicate 3 different modes of mapping minnows to multi-core nodes. The
solid lines were runs on 32 nodes; the dotted line was a run on 1024 nodes.

19

thus being used.
The performance of the third mode of mapping (by allocated node, then by core) is best of all,

as shown by the X curves. As with the previous benchmarks, this is because fewer cores per node
are used and thus more inter-node communication capability is available on a per-minnow basis.
For runs on 32 nodes of the parallel machine (solid lines in Figure 11, this mapping mode does not
saturate until 64 processors, at an aggregate rate of ∼40 million datums/sec for PHISH on MPI
(or MPI-only). With a 32-node allocation, the 64-processor runs are using 1 core per node as the
source, and 1 core per node as the sink. The 128- and 256-core runs use more cores per node,
resulting in less inter-node communication capacity on a per-core basis, and performance falls off.
Similar trends for the 3 modes were seen for the other PHISH options (ZMQ, Python) as well as
the MPI-only case.

We also ran the same test on a 1024-node allocation (dotted line in Figure 11). The aggregate
rate now continues to increase to 147 million datums/sec on 1024 processors (1 core per node),
with a similar roll-off in performance if more cores per node are used. The rate fell to 49 million
datums/sec on 2048 processors (2 cores per node).

The ZMQ performance difference versus MPI for this test is about 2x, which is worse than for
the chain test, but considerably better than the pingpong test. Again, datums are streaming in one
direction through this PHISH net, which is more compatible with socket throughput capabilities.

Figure 12 shows the rate at which datums of varying sizes can be communicated in an all-to-all
hashed mode from 32 source minnows to 32 sink minnows (64 total). As in the chain test, for
small datums the rate is fairly constant. Above 1K bytes the rate degrades due to communication
bandwidth limitations. 16K-byte datums can still be streamed at a aggregate rate of 1 million per
second by the 32 source minnows. The performance differences between the 3 modes of mapping
minnows to multi-core nodes are similar to that of the the 64-processor data points in Figure 11.

4.4 Edge test for graph algorithms

Finally, we test two schools of minnows, communicating in a hashed all-to-all manner, similar to
the hash test of the previous sub-section. However, the first school of minnows now generate graph
edges from an R-MAT distribution [9], as non-zeroes sampled from a uniform sparse matrix, hashing
each edge (I, J) on its first vertex I. While random entries in a uniform sparse matrix (non-zero
Aij ⇐⇒ edge (I, J)) can be generated more quickly by other means, the R-MAT algorithm is more
general, since edges from a graph with a highly skewed degree distribution (e.g. a power-law graph)
can be generated via the same procedure.

Each receiving graph minnow owns a subset of the vertices (due to the result of the hash function)
and stores each received edge in a list of neighbors J associated with I. These operations are
essentially the first stages of both the triangle enumeration and sub-graph isomorphism matching
algorithms of Section 3. In a benchmark sense, these results indicate the maximum stream rate
for incoming edges that a graph algorithm built on top of PHISH can accept, assuming there is an
overhead cost to looking up and storing edges in a data structure keyed by vertex ID, before they
are processed further.

Figure 13 shows performance results for the benchmark. All the results are for PHISH using its
MPI backend, with R-MAT and graph minnows written in C++. Only two cores of each 8-core
node were used, one for an R-MAT minnow, one for a graph minnow. Thus when running on 16
processors, the PHISH net had 8 minnows in each school and was run on 8 nodes of the Linux
cluster.

The total edge count and size of the associated R-MAT matrix scaled with the number of proces-
sors used. The R-MAT matrix was NxN where N = 222+P/2 and the average edge count per vertex

20

Figure 12: Rate of sending datums of varying sizes in a hashed mode from 32 source minnows to
32 sink minnows. All but the MPI-only curves are for PHISH, using its MPI or ZMQ backend,
with minnows written in C++ or Python. The meaning of curves with X’s, circles, and diamonds
is the same as in Figures 9 and 11.

21

Figure 13: Rate of generating, communicating, and storing graph edges on P/2 R-MAT minnows
and P/2 graph minnows, as a function of total minnow count P . (Black) R-MAT minnows generate
random edges, but do not send them. (Red) Graph minnows also receive edges, but do not store
them. (Green) Graph minnows also store edges in a hash table of hash tables, as described in the
text.

was 8. Thus when running on 2 processors (one R-MAT minnow, one graph minnow), 226 ' 67.1
million edges from an order N = 223 ' 8.4 million matrix were generated and sent by the R-MAT
minnow, and were received and stored by the graph minnow. On 64 processors, 231 ' 2.1 bil-
lion edges were generated and stored from a sparse matrix with N = 228 ' 268 million rows and
columns.

The figure has 3 sets of results. For the black curve, R-MAT minnows generate edges but do
not send them, so the graph minnows are idle. This gives a baseline rate for generating random
edges from a large, sparse graph. The R-MAT algorithm generates each edge in a recursive manner,
where the number of recursion levels is log2(N), with N = 23-28 on P = 2-64 processors in our
case. Thus the black curve scales essentially perfectly, if the slow increase in recursion levels is
accounted for.

For the red curve, R-MAT minnows send the generated edges to the graph minnows, which
receive them, but discard them. The added communication cost drops the effective edge rate by
about a third on 2 processors, and in half on 64 processors. Since the graph minnows are operating
independent of the R-MAT minnows, the communication between the two schools is now the rate-
limiting step; even if the R-MAT minnows generated edges more quickly (e.g. read them from a
file or high-bandwidth source), it would not significantly reduce the run time.

For the green curve, graph minnows store the (I, J) edges they receive by looking up vertex I in
a primary hash table. The edges J of I are stored in a secondary hash table. The reason to use
hash tables is that the cost to lookup or add an entry is O(1), independent of the number of entries

22

N in the table.2 This is important for streaming graph algorithms, since retrieving, modifying, or
iterating over the edges of a vertex are common operations. Ideally their cost should not depend
on the size of the graph, so that the algorithm can keep up with a constant stream rate of incoming
edges. In this benchmark, the primary hash table on each processor (keyed by vertex I) is large;
each graph minnow stores ∼8.4 million vertices by the end of the run. The secondary hash tables
(8.4 million of them, each keyed by edge J) are tiny; on average each has only 8 entries. The figure
shows that the additional cost of storing the received edges is small compared to the communication
cost (green curve versus red).

The bottom line for Figure 13 is that a single graph minnow can receive and store graph edges
at a rate of roughly 1M edges/sec. 32 graph minnows can receive edges, from any of 32 R-MAT
sources, communicated in an all-to-all manner, at an aggregate rate of 21.6M edges/sec, for a
parallel efficiency of 68%.

5 Conclusions

We have described a freely available software framework, called PHISH, which can be used to
develop and deploy algorithms that process streaming or other kinds of big data.

Our chief goal in developing PHISH was to make it easier to process streaming data in parallel
on distributed-memory platforms. Because PHISH uses either MPI or the ZMQ sockets library to
send stream datums from one process to another, PHISH programs can run on nearly any kind of
parallel machine, including networked, heterogeneous, and geographically dispersed machines, so
long as they allow socket-based communication.

The benchmark results of Section 4 indicate that on a prototypical HPC platform using MPI, sin-
gle processors can send and receive small datums via PHISH at rates around a million datums/sec.
If a stream is split, so that it is communicated and processed by multiple processes, e.g. by hashing
on values in the stream, streams with rates of many tens of millions of datums/sec can be processed.

A secondary goal was to provide a framework that enables rapid development, debugging, and
benchmarking of streaming algorithms themselves. As an example, the triangle enumeration and
sub-graph isomorphism matching algorithms of Section 3 required “triangle” and “SGI” minnows
that consisted of 90 and 140 lines of Python respectively (without comments). We think this is
a relatively small amount of code to find triangles and SGI matches in parallel, in a continuous
stream of graph edges.

Our own interest is in graph algorithms, but various kinds of statistical, data mining, machine
learning, anomaly detection, and even numerical algorithms can be formulated for streaming data.
We hope that PHISH can be a useful tool in those contexts as well.

6 Acknowledgments

The PHISH library is open-source software, which can be downloaded from http://www.sandia.
gov/~sjplimp/phish.html. It is freely available under the terms of the BSD license. PHISH
minnows that implement the graph algorithms of Section 3 and the benchmarks of Section 4 are
included in the distribution.

2The commonly-used std::map container class provided by the C++ Standard Library is not a true hash table, but
a binary tree with O(logN) cost for lookup or insertion. We used the std::tr1::unordered map class for the primary
container, and std::tr1::unordered set class for the secondary; both are hash tables with average-case O(1) cost, and
are now part of the C++11 standard.

23

We thank Jon Berry and Cindy Phillips (Sandia) for permission to discuss their as-yet unpub-
lished streaming connected-component finding algorithm in the context of PHISH. We also thank
Karl Anderson (DoD) for many insightful discussions of streaming algorithms and related ideas.

This work was supported by the Laboratory Directed Research and Development program at
Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company, for the United States Department of Energy, under contract DE-AC04-
94AL85000.

References

[1] Hadoop web site: http://hadoop.apache.org.

[2] Twitter Storm web site: http://storm-project.net.

[3] IBM InfoSphere Streams web site: http://www-01.ibm.com/software/data/infosphere/stream-
computing.

[4] SQLstream web site: http://www.sqlstream.com.

[5] Visualization Toolkit (VTK) web site: http://www.vtk.org.

[6] φMQ or ZMQ web site: http://www.zeromq.org.

[7] J. Berry, M. Oster, C. Phillips, and S. J. Plimpton. Maintaining connected components for
infinite graph streams. Draft manuscript, 2012.

[8] J. W. Berry. Practical heuristics for inexact subgraph isomorphism. Draft manuscript, 2011.

[9] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for graph mining. In
SIAM Data Mining, 2004.

[10] J. Cohen. Graph twiddling in a MapReduce world. Computing in Science and Engineering,
11:29–41, 2009.

[11] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears. MapReduce
online. In NSDI’10 Proceedings of the 7th USENIX conference on Networked systems design
and implementation, page 21, 2010.

[12] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, 2008.

[13] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, 1999.

[14] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. In J. M.
Abello and J. S. Vitter, editors, External Memory Algorithms: DIMACS Workshop on External
Memory and Visualization, pages 107–118. AMS, 1999.

[15] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow programming
languages. ACM Computing Surveys, 36:1–34, 2004.

[16] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy. A platform for scalable one-pass analyt-
ics using MapReduce. In SIGMOD ’11 Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data, pages 985–996, 2011.

24

[17] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in
Theoretical Computer Science Series. Now Publishers Inc., 2005.

[18] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed stream computing platform.
In Proceedings 2010 10th IEEE International Conference on Data Mining Workshops, 2010.

[19] T. C. O’Connell. A survey of graph algorithms in extensions to the streaming model of
computation. In S. S. Ravi and S. K. Shukla, editors, Fundamental Problems in Computing:
Essays in Honor of Professor Daniel J. Rosenkrantz, pages 455–476. Springer, 2009.

[20] T. Plantenga. Inexact subgraph isomorphism in MapReduce. J Parallel & Distributed Com-
puting, 2012. To appear.

[21] S. J. Plimpton and K. D. Devine. MapReduce in MPI for large-scale graph algorithms. Parallel
Computing, 37:610–632, 2011. MapReduce-MPI web site: http://mapreduce.sandia.gov.

[22] T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gullingsrud, M. O. Jensen, J. L.
Klepeis, P. Maragakis, P. Miller, K. A. Stafford, and D. E. Shaw. A scalable parallel framework
for analyzing terascale molecular dynamics simulation trajectories. In SC ’08: Proceedings of
the 2008 ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ, USA, 2008.
IEEE Press.

[23] B. Wylie and J. Baumes. A unified toolkit for information and scientific visualization. volume
7243, page 72430H. IS&T/SPIE Electronic Imaging 2009, Visual Data Analytics (VDA 2009),
01 2009. Titan Informatics Toolkit web site: http://titan.sandia.gov.

25

